mercredi 29 avril 2015

Assignment to an array subsection: am I assigning to an Rvalue here, and if so how do I fix it?

In the hope of making my Fortran code easier to port over to C++ one day, I've been working on some expression template code to provide whole-array arithmetic operators and the ability to copy from and assign to specified sections of longer arrays. Unfortunately I can't think of a way of coming to my question, without a fair bit of boilerplate code which I'll cut down as much as I can.

First of all I have a very simple 'C-style array struct' encapsulating a pointer and a length, suitable for being easily passed back and forth between the C, Fortran, C++ and Java parts of my mixed-language application:

typedef struct {
    int *p;    /*!< Pointer to the data */
    int n;     /*!< The number of elements; int, not size_t, for Fortran compatibility  */
} int_array_C;

typedef struct {
    float *p;    /*!< Pointer to the data */
    int n;       /*!< The number of elements; int, not size_t, for Fortran compatibility  */
} float_array_C;

typedef struct {
    double *p;   /*!< Pointer to the data */
    int n;       /*!< The number of elements; int, not size_t, for Fortran compatibility  */
} double_array_C;

...and so on for all the native types. I then define some very simple expression templates based on the approach suggested in the Wikipedia entry on that subject:

template <typename E, typename T_C >
class VecExpression
{
    typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;
public:
    //! Returns a const reference to the i'th element in the array
    TT operator[] (int i) const noexcept 
    {
        return static_cast<E const&>(*this)[i];
    }

    //! Returns the total size of the array
    int size() const noexcept
    {
        return static_cast<E const &>(*this).size();
    }

    operator E&() { return static_cast<E&>(*this); }
    operator E const&() const { return static_cast<const E&>(*this); }
};

template <typename E1, typename T_C, typename E2, typename U_C  >
class VecSum : public VecExpression< VecSum<E1, T_C, E2, U_C>, T_C >
{
    E1 const & _u;
    E2 const & _v;
public:
    //! Constructor taking two VecExpressions
    VecSum(VecExpression<E1, T_C> const& u, VecExpression<E2, U_C> const &v) : _u(u), _v(v)
    {
        assert(u.size() == v.size());
    }

    int size() const noexcept { return _v.size(); }

    auto operator[](int i) const
        -> const decltype(_u[i] + _v[i]) { return _u[i] + _v[i]; }
                 // Automatically takes care of type promotion e.g. int to double
                 // according to the compiler's normal rules
};

template <typename E1, typename T_C, typename E2, typename U_C  >
VecSum<E1, T_C, E2, U_C> const operator+(VecExpression<E1, T_C> const &u,
                                         VecExpression<E2, U_C> const &v)
{
    return VecSum<E1, T_C, E2, U_C>(u, v);
}

To give me a way of manipulating the contents of my C-style vectors, I define some templates: one which manipulates data in a pre-existing buffer, and another which manages its own memory by using a std::vector:

template <typename T_C> class nArray : public T_C, public VecExpression<nArray <T_C>, T_C >
{                                                  // This is the 'curiously recurring template
                                                   // pattern' (CRTP)
    typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;

    struct startingIndex : public T_C
    {
        size_t start;

        startingIndex(const T_C *initialiser) noexcept
        {
            *(static_cast<T_C *>(this)) = *initialiser;
        }

        nArray to(int element) noexcept
        {
            T_C::n = element - start + 1;
            nArray<T_C> newArray(*(static_cast<T_C *>(this)));
            return newArray;
        }
    };

public:
    //! Constructor to create an nArray from an array_C, without copying its memory
    nArray(T_C theArray) noexcept
    {
        T_C::p = theArray.p;
        T_C::n = theArray.n;
    }

    //! Constructor to create an nArray from an ordinary C array, without copying its memory
    template<std::size_t N>
    nArray(TT (&theArray)[N]) noexcept
    {
        T_C::p = &theArray[0];
        T_C::n = N;
    }

    nArray & operator=(VecExpression<nArray<T_C>, T_C> const& source) &
    {
        // Note that we cannot use the copy-and-swap idiom here because we don't have the means to
        // construct a new temporary memory buffer. Therefore we have to handle the assignment-to-self
        // case explicitly.
        if (&source == this) return *this;
        assert(T_C::n == source.size());
        for (int i=0; i<T_C::n; ++i) T_C::p[i] = source[i];
        return *this;
    }

    //! Copy assignment operator taking a VecExpression of a different (but compatible) type
    //! without allocating any new memory
    template <typename E, typename U_C>
    nArray operator=(VecExpression<E, U_C> const& source) &
    {
        assert(T_C::n == source.size());
        for (int i=0; i<T_C::n; ++i) T_C::p[i] = static_cast<TT>(source[i]);
        return *this;
    }

    //! Returns a non-const reference to the i'th element in the array
    TT& operator[] (int i) noexcept
    {
        return T_C::p[i];
    }

    //! Returns a const reference to the i'th element in the array
    const TT& operator[] (int i) const noexcept
    {
        return T_C::p[i];
    }

    startingIndex from(int element) const noexcept
    {
        startingIndex theNewArray(this);
        theNewArray.p = &T_C::p[static_cast<size_t>(element)];
        theNewArray.n = T_C::n - element;
        theNewArray.start = element;
        return theNewArray;
    }

    nArray to(int element) const noexcept
    {
        nArray theNewArray;
        theNewArray.p = T_C::p;
        theNewArray.n = element + 1;
        return theNewArray;
    }

    // ... and a whole bunch of other functions
};

template <typename T_C> class nVector : public nArray<T_C>
{
    typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;

public:
    template<std::size_t N>
    nVector(TT (&source)[N]) 
    {
        contents.resize(N);
        update_basetype();
        std::copy(&source[0], &source[N], contents.begin());
    }

    // ...and a whole bunch of other constructors and assignment operators
    // which echo those of nArray with the additional step of resizing the
    // internal std::vector and copying the contents into it

private:
    void update_basetype() noexcept
    {
        T_C::p = contents.size() > 0 ? contents.data() : nullptr;
        T_C::n = contents.size();
    }

    std::vector<TT> contents;
};

typedef nArray<float_array_C> float_array;
typedef nVector<float_array_C> float_vector;

// ...and so on

Phew! From this point, I can do things like

float a[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float b[] = { 9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f };

float_array aArray(a);  // The array contents aren't copied, only
float_array bArray(b);  // the pointers

float_vector aVector = aArray.from(2);  // aVector is { 3.0f, 4.0f, 5.0f, 6.0f }
float_vector bVector = bArray.to(3);    // bVector is { 9.0f, 8.0f, 7.0f, 6.0f } 
float_vector cVector = aArray.from(2).to(4) + bArray.from(1).to(3);
                                        // cVector is { 11.0f, 11.0f, 11.0f } 

...and they work a treat. Now, finally, I can come to my question. Suppose I want to assign to an array subsection, for example:

float_vector dVector(10);  // An empty 10-element array
dVector.from(3).to(5) = aArray.from(2).to(4) + bArray.from(1).to(3);

As a matter of fact if I compile in Visual C++ 2013 this works just fine, but in gcc it doesn't. Compilation fails at the assignment, with the message:

error: no match for 'operator=' (operand types are 'nArray<float_array_C>' and 'const VecSum<nArray<float_array_C>, float_array_C, nArray<float_array_C>, float_array_C>')
note: candidates are:
     < ...skipping over a long list of utterly implausible options>
note: nArray<T_C>& nArray<T_C>::operator=(const VecExpression<nArray<T_C>, T_C>&) & [with T_C = float_array_C]
note: no known conversion for implicit 'this' parameter form 'nArray<float_array_C>' to 'nArray<float_array_C>&'

Now, this error message seems to crop up on the literature when trying to assign a temporary object to a non-const reference, or when trying to make an assignment to an Rvalue, and Visual C++ is documented as being slacker with respect to this rule than gcc is (with gcc being the one that conforms to the standard, naturally). I can kind-of-understand why the compiler might regard

dVector.from(3).to(5)

as an Rvalue, even though I've bent over backwards to try to prevent it from being so. For example my startingIndex::to() method diligently returns an nArray object by value, not by reference, and if I write

auto test1 = dVector.from(3).to(5);
auto test2 = aArray.from(2).to(4) + bArray.from(1).to(3);
test1 = test2;

...then this works fine and the compiler tells me that 'test1' is an 'nArray<float_array_C>' (i.e. a float_array) exactly as it should be.

So, my question is: am I in fact guilty of trying to assign to an Rvalue here? And if I am, how can I cease doing so, while still being able to make assignments to sub-arrays in this way, or at least some similarly-readable way. I truly hope that this can be done in some way in C++, otherwise I guess I'll need to go back to Fortran-land, writing

dVector(3:5) = aArray(2:4) + bArray(1:3)

...and living happily ever after.

Aucun commentaire:

Enregistrer un commentaire