I am studying this example. I have found this question and thought that I will get an answer, but I still have a question.
I post the the code here for convenience:
std::mutex m;
std::condition_variable cv;
std::string data;
bool ready = false;
bool processed = false;
void worker_thread()
{
// Wait until main() sends data
std::cout << "------------------------\n";
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return ready;});
// after the wait, we own the lock.
std::cout << "Worker thread is processing data\n";
data += " after processing";
// Send data back to main()
processed = true;
std::cout << "Worker thread signals data processing completed\n";
// Manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again (see notify_one for details)
lk.unlock();
cv.notify_one();
}
int main()
{
std::thread worker(worker_thread);
data = "Example data";
// send data to the worker thread
{
std::lock_guard<std::mutex> lk(m);
ready = true;
std::cout << "main() signals data ready for processing\n";
}
cv.notify_one();
// wait for the worker
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return processed;});
}
std::cout << "Back in main(), data = " << data << '\n';
worker.join();
return 0;
}
Should not the statement std::unique_lock<std::mutex> lk(m);
block the main thread because mutex m
is locked by worker_thread
? If yes, isn't the statement cv.wait(lk, []{return processed;});
after it unnecessary in this example? When main thread can lock the mutex, processed
will be already true.
Aucun commentaire:
Enregistrer un commentaire