My little consumer-producer problem had me stumped for some time. I didn't want an implementation where one producer pushes some data round-robin to the consumers, filling up their queues of data respectively.
I wanted to have one producer, x consumers, but the producer waits with producing new data until a consumer is free again. In my example there are 3 consumers so the producer creates a maximum of 3 objects of data at any given time. Since I don't like polling, the consumers were supposed to notify the producer when they are done. Sounds simple, but the solution I found doesn't please me. First the code.
#include "stdafx.h"
#include <mutex>
#include <iostream>
#include <future>
#include <map>
#include <atomic>
std::atomic_int totalconsumed;
class producer {
using runningmap_t = std::map<int, std::pair<std::future<void>, bool>>;
// Secure the map of futures.
std::mutex mutex_;
runningmap_t running_;
// Used for finished notification
std::mutex waitermutex_;
std::condition_variable waiter_;
// The magic number to limit the producer.
std::atomic<int> count_;
bool can_run();
void clean();
// Fake a source, e.g. filesystem scan.
int fakeiter;
int next();
bool has_next() const;
public:
producer() : fakeiter(50) {}
void run();
void notify(int value);
void wait();
};
class consumer {
producer& producer_;
public:
consumer(producer& producer) : producer_(producer) {}
void run(int value) {
std::this_thread::sleep_for(std::chrono::milliseconds(42));
std::cout << "Consumed " << value << " on (" << std::this_thread::get_id() << ")" << std::endl;
totalconsumed++;
producer_.notify(value);
}
};
// Only if less than three threads are active, another gets to run.
bool producer::can_run() { return count_.load() < 3; }
// Verify if there's something to consume
bool producer::has_next() const { return 0 != fakeiter; }
// Produce the next value for consumption.
int producer::next() { return --fakeiter; }
// Remove the futures that have reported to be finished.
void producer::clean()
{
for (auto it = running_.begin(); it != running_.end(); ) {
if (it->second.second) {
it = running_.erase(it);
}
else {
++it;
}
}
}
// Runs the producer. Creates a new consumer for every produced value. Max 3 at a time.
void producer::run()
{
while (has_next()) {
if (can_run()) {
auto c = next();
count_++;
auto future = std::async(&consumer::run, consumer(*this), c);
std::unique_lock<std::mutex> lock(mutex_);
running_[c] = std::make_pair(std::move(future), false);
clean();
}
else {
std::unique_lock<std::mutex> lock(waitermutex_);
waiter_.wait(lock);
}
}
}
// Consumers diligently tell the producer that they are finished.
void producer::notify(int value)
{
count_--;
mutex_.lock();
running_[value].second = true;
mutex_.unlock();
std::unique_lock<std::mutex> waiterlock(waitermutex_);
waiter_.notify_all();
}
// Wait for all consumers to finish.
void producer::wait()
{
while (!running_.empty()) {
mutex_.lock();
clean();
mutex_.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
// Looks like the application entry point.
int main()
{
producer p;
std::thread pthread(&producer::run, &p);
pthread.join();
p.wait();
std::cout << std::endl << std::endl << "Total consumed " << totalconsumed.load() << std::endl;
return 0;
}
The part I don't like is the list of values mapped to the futures, called running_. I need to keep the future around until the consumer is actually done. I can't remove the future from the map in the notify method or else I'll kill the thread that is currently calling notify.
Am I missing something that could simplify this construct?
Aucun commentaire:
Enregistrer un commentaire