I am new to writing some avx intrinsics based code so need some help in understanding if my observations are expected. I have 2 methods implementing distance computations, both methods take 2 float arrays and its dimension and returns a float distance. The first method computes a euclidean distance
static float
compute_l2Square(const void *pVect1v, const void *pVect2v, const void *qty_ptr) {
float *pVect1 = (float *) pVect1v;
float *pVect2 = (float *) pVect2v;
size_t qty = *((size_t *) qty_ptr);
float __attribute__((aligned(32))) TmpRes[8];
size_t qty16 = qty >> 4;
const float *pEnd1 = pVect1 + (qty16 << 4);
__m256 diff, v1, v2;
__m256 sum = _mm256_set1_ps(0);
while (pVect1 < pEnd1) {
v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));
v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_sub_ps(v1, v2);
sum = _mm256_add_ps(sum, _mm256_mul_ps(diff, diff));
}
_mm256_store_ps(TmpRes, sum);
return TmpRes[0] + TmpRes[1] + TmpRes[2] + TmpRes[3] + TmpRes[4] + TmpRes[5] + TmpRes[6] + TmpRes[7];
}
The second method computes a bitwise xor and then counts number of 1 i.e hamming distance
static float compute_hamming(const void* __restrict pVect1v,
const void* __restrict pVect2v,
const void* __restrict qty_ptr) {
float *pVect1 = (float *) pVect1v;
float *pVect2 = (float *) pVect2v;
size_t qty = *((size_t *)qty_ptr);
uint64_t __attribute__((aligned(32))) TmpRes[4];
size_t qty16 = qty >> 4;
const float *pEnd1 = pVect1 + (qty16 << 4);
int res = 0;
__m256 diff, v1, v2;
while (pVect1 < pEnd1) {
v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_xor_ps(v1, v2);
_mm256_store_si256( (__m256i*)TmpRes, _mm256_castps_si256(diff));
res += __builtin_popcountll(TmpRes[0]) + __builtin_popcountll(TmpRes[1])
+ __builtin_popcountll(TmpRes[2]) + __builtin_popcountll(TmpRes[3]);
v1 = _mm256_loadu_ps(pVect1);
pVect1 += 8;
v2 = _mm256_loadu_ps(pVect2);
pVect2 += 8;
diff = _mm256_xor_ps(v1, v2);
_mm256_store_si256( (__m256i*)TmpRes, _mm256_castps_si256(diff));
res += __builtin_popcountll(TmpRes[0]) + __builtin_popcountll(TmpRes[1])
+ __builtin_popcountll(TmpRes[2]) + __builtin_popcountll(TmpRes[3]);
}
return res;
}
For the same number of bits, l2 square distance computation is much faster than hamming i.e almost 2x-4x 9 ( i.e computing l2 distance for 512 bits which 16 floats is faster than computing hamming on the 16 floats) . I am not really sure if this is expected . To me it seems that popcount and storing the results to temp is causing some slowness , because when i modify the l2 distance computation to do xor operation instead of sub i.e replace _mm256_sub_ps
with _mm256_xor_ps
the l2 computation becomes more fast.
I am benchmarking on a mac os, which has avx instruction support. Also another observation is a non avx implementation of hamming distance using just loop : sum += popcount(vec_a[i] ^ vec_b[i]) is also giving similar numbers as avx implementation . I also checked that avx instructions and methods are invoked just for sanity checks.
Need some help and recommendations on improving the performance since the bottleneck is distance computation method.
Aucun commentaire:
Enregistrer un commentaire