In the hope of making my Fortran code easier to port over to C++ one day, I've been working on some expression template code to provide whole-array arithmetic operators and the ability to copy from and assign to specified sections of longer arrays. Unfortunately I can't think of a way of coming to my question, without a fair bit of boilerplate code which I'll cut down as much as I can.
First of all I have a very simple 'C-style array struct' encapsulating a pointer and a length, suitable for being easily passed back and forth between the C, Fortran, C++ and Java parts of my mixed-language application:
typedef struct {
int *p; /*!< Pointer to the data */
int n; /*!< The number of elements; int, not size_t, for Fortran compatibility */
} int_array_C;
typedef struct {
float *p; /*!< Pointer to the data */
int n; /*!< The number of elements; int, not size_t, for Fortran compatibility */
} float_array_C;
typedef struct {
double *p; /*!< Pointer to the data */
int n; /*!< The number of elements; int, not size_t, for Fortran compatibility */
} double_array_C;
...and so on for all the native types. I then define some very simple expression templates based on the approach suggested in the Wikipedia entry on that subject:
template <typename E, typename T_C >
class VecExpression
{
typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;
public:
//! Returns a const reference to the i'th element in the array
TT operator[] (int i) const noexcept
{
return static_cast<E const&>(*this)[i];
}
//! Returns the total size of the array
int size() const noexcept
{
return static_cast<E const &>(*this).size();
}
operator E&() { return static_cast<E&>(*this); }
operator E const&() const { return static_cast<const E&>(*this); }
};
template <typename E1, typename T_C, typename E2, typename U_C >
class VecSum : public VecExpression< VecSum<E1, T_C, E2, U_C>, T_C >
{
E1 const & _u;
E2 const & _v;
public:
//! Constructor taking two VecExpressions
VecSum(VecExpression<E1, T_C> const& u, VecExpression<E2, U_C> const &v) : _u(u), _v(v)
{
assert(u.size() == v.size());
}
int size() const noexcept { return _v.size(); }
auto operator[](int i) const
-> const decltype(_u[i] + _v[i]) { return _u[i] + _v[i]; }
// Automatically takes care of type promotion e.g. int to double
// according to the compiler's normal rules
};
template <typename E1, typename T_C, typename E2, typename U_C >
VecSum<E1, T_C, E2, U_C> const operator+(VecExpression<E1, T_C> const &u,
VecExpression<E2, U_C> const &v)
{
return VecSum<E1, T_C, E2, U_C>(u, v);
}
To give me a way of manipulating the contents of my C-style vectors, I define some templates: one which manipulates data in a pre-existing buffer, and another which manages its own memory by using a std::vector:
template <typename T_C> class nArray : public T_C, public VecExpression<nArray <T_C>, T_C >
{ // This is the 'curiously recurring template
// pattern' (CRTP)
typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;
struct startingIndex : public T_C
{
size_t start;
startingIndex(const T_C *initialiser) noexcept
{
*(static_cast<T_C *>(this)) = *initialiser;
}
nArray to(int element) noexcept
{
T_C::n = element - start + 1;
nArray<T_C> newArray(*(static_cast<T_C *>(this)));
return newArray;
}
};
public:
//! Constructor to create an nArray from an array_C, without copying its memory
nArray(T_C theArray) noexcept
{
T_C::p = theArray.p;
T_C::n = theArray.n;
}
//! Constructor to create an nArray from an ordinary C array, without copying its memory
template<std::size_t N>
nArray(TT (&theArray)[N]) noexcept
{
T_C::p = &theArray[0];
T_C::n = N;
}
nArray & operator=(VecExpression<nArray<T_C>, T_C> const& source) &
{
// Note that we cannot use the copy-and-swap idiom here because we don't have the means to
// construct a new temporary memory buffer. Therefore we have to handle the assignment-to-self
// case explicitly.
if (&source == this) return *this;
assert(T_C::n == source.size());
for (int i=0; i<T_C::n; ++i) T_C::p[i] = source[i];
return *this;
}
//! Copy assignment operator taking a VecExpression of a different (but compatible) type
//! without allocating any new memory
template <typename E, typename U_C>
nArray operator=(VecExpression<E, U_C> const& source) &
{
assert(T_C::n == source.size());
for (int i=0; i<T_C::n; ++i) T_C::p[i] = static_cast<TT>(source[i]);
return *this;
}
//! Returns a non-const reference to the i'th element in the array
TT& operator[] (int i) noexcept
{
return T_C::p[i];
}
//! Returns a const reference to the i'th element in the array
const TT& operator[] (int i) const noexcept
{
return T_C::p[i];
}
startingIndex from(int element) const noexcept
{
startingIndex theNewArray(this);
theNewArray.p = &T_C::p[static_cast<size_t>(element)];
theNewArray.n = T_C::n - element;
theNewArray.start = element;
return theNewArray;
}
nArray to(int element) const noexcept
{
nArray theNewArray;
theNewArray.p = T_C::p;
theNewArray.n = element + 1;
return theNewArray;
}
// ... and a whole bunch of other functions
};
template <typename T_C> class nVector : public nArray<T_C>
{
typedef typename std::remove_pointer<decltype(T_C::p)>::type TT;
public:
template<std::size_t N>
nVector(TT (&source)[N])
{
contents.resize(N);
update_basetype();
std::copy(&source[0], &source[N], contents.begin());
}
// ...and a whole bunch of other constructors and assignment operators
// which echo those of nArray with the additional step of resizing the
// internal std::vector and copying the contents into it
private:
void update_basetype() noexcept
{
T_C::p = contents.size() > 0 ? contents.data() : nullptr;
T_C::n = contents.size();
}
std::vector<TT> contents;
};
typedef nArray<float_array_C> float_array;
typedef nVector<float_array_C> float_vector;
// ...and so on
Phew! From this point, I can do things like
float a[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float b[] = { 9.0f, 8.0f, 7.0f, 6.0f, 5.0f, 4.0f };
float_array aArray(a); // The array contents aren't copied, only
float_array bArray(b); // the pointers
float_vector aVector = aArray.from(2); // aVector is { 3.0f, 4.0f, 5.0f, 6.0f }
float_vector bVector = bArray.to(3); // bVector is { 9.0f, 8.0f, 7.0f, 6.0f }
float_vector cVector = aArray.from(2).to(4) + bArray.from(1).to(3);
// cVector is { 11.0f, 11.0f, 11.0f }
...and they work a treat. Now, finally, I can come to my question. Suppose I want to assign to an array subsection, for example:
float_vector dVector(10); // An empty 10-element array
dVector.from(3).to(5) = aArray.from(2).to(4) + bArray.from(1).to(3);
As a matter of fact if I compile in Visual C++ 2013 this works just fine, but in gcc it doesn't. Compilation fails at the assignment, with the message:
error: no match for 'operator=' (operand types are 'nArray<float_array_C>' and 'const VecSum<nArray<float_array_C>, float_array_C, nArray<float_array_C>, float_array_C>')
note: candidates are:
< ...skipping over a long list of utterly implausible options>
note: nArray<T_C>& nArray<T_C>::operator=(const VecExpression<nArray<T_C>, T_C>&) & [with T_C = float_array_C]
note: no known conversion for implicit 'this' parameter form 'nArray<float_array_C>' to 'nArray<float_array_C>&'
Now, this error message seems to crop up on the literature when trying to assign a temporary object to a non-const reference, or when trying to make an assignment to an Rvalue, and Visual C++ is documented as being slacker with respect to this rule than gcc is (with gcc being the one that conforms to the standard, naturally). I can kind-of-understand why the compiler might regard
dVector.from(3).to(5)
as an Rvalue, even though I've bent over backwards to try to prevent it from being so. For example my startingIndex::to() method diligently returns an nArray object by value, not by reference, and if I write
auto test1 = dVector.from(3).to(5);
auto test2 = aArray.from(2).to(4) + bArray.from(1).to(3);
test1 = test2;
...then this works fine and the compiler tells me that 'test1' is an 'nArray<float_array_C>' (i.e. a float_array) exactly as it should be.
So, my question is: am I in fact guilty of trying to assign to an Rvalue here? And if I am, how can I cease doing so, while still being able to make assignments to sub-arrays in this way, or at least some similarly-readable way. I truly hope that this can be done in some way in C++, otherwise I guess I'll need to go back to Fortran-land, writing
dVector(3:5) = aArray(2:4) + bArray(1:3)
...and living happily ever after.
Aucun commentaire:
Enregistrer un commentaire