I'm trying to create a small class that will allow me to facilitate a communication between two threads.
Those threads most probably will outlive the context in which the above mentioned class was created as they are queued onto a thread pool.
What I have tried so far (on coliru as well):
class A
{
public:
A(int maxVal) : maxValue(maxVal) {}
bool IsOverMax() const { return cur >= maxValue; }
void Increase() { cur++; }
private:
const int maxValue;
atomic_int cur{ 0 };
};
possible usage:
void checking(const shared_ptr<A> counter)
{
while(!counter->IsOverMax())
{
cout<<"Working\n"; // do work
std::this_thread::sleep_for(10ms);
}
}
void counting(shared_ptr<A> counter)
{
while (!counter->IsOverMax())
{
cout<<"Counting\n";
counter->Increase(); // does this fall under `...uses a non-const member function of shared_ptr then a data race will occur`? http://ift.tt/1jrtS5s
std::this_thread::sleep_for(9ms);
}
}
int main()
{
unique_ptr<thread> t1Ptr;
unique_ptr<thread> t2Ptr;
{
auto aPtr = make_shared<A>(100); // This might be out of scope before t1 and t2 end
t1Ptr.reset(new thread(checking, aPtr)); // To simbolize that t1,t2 will outlive the scope in which aPtr was originaly created
t2Ptr.reset(new thread(counting, aPtr));
}
t2Ptr->join();
t1Ptr->join();
//cout<< aPtr->IsOverMax();
}
The reason I'm concerned is that the documentation says that:
If multiple threads of execution access the same std::shared_ptr object without synchronization and any of those accesses uses a non-const member function of shared_ptr then a data race will occur unless all such access is performed through these functions, which are overloads of the corresponding atomic access functions (std::atomic_load, std::atomic_store, etc.)
- So
Increase
is a non const function, are the copies of aPtr arethe same std::shared_ptr
for this context or not ? - Is this code thread-safe?
- In any case why?
Aucun commentaire:
Enregistrer un commentaire