I am trying to implement RSA key signing and verifying. I am making use of the modular exponentiation where I am encountering errors possibly due to integer overflow.
uint64_t modmult(uint64_t a,uint64_t b,uint64_t mod)
{
if (a == 0 || b < mod / a)
return ((uint64_t)a*b)%mod;
uint64_t sum;
sum = 0;
while(b>0)
{
if(b&1)
sum = (sum + a) % mod;
a = (2*a) % mod;
b>>=1;
}
return sum;
}
uint64_t modpow( uint64_t a,uint64_t b,uint64_t mod)
{
uint64_t product,pseq;
product=1;
pseq=a%mod;
while(b>0)
{
if(b&1)
product=modmult(product,pseq,mod);
pseq=modmult(pseq,pseq,mod);
b>>=1;
}
return product;
}
The function call
long long d = 2897297195663230443;
uint64_t n = 10136926879504331723;
modpow(1233,d,n);
The n
is a multiple of two unsigned uint32_t prime numbers (4063800743,2494444861)
the modular exponentiation result is 3148683887780272464
, but it should be 9640529604970470922
However when n
is a multiple of two signed int32_t prime numbers the result is correct.
Aucun commentaire:
Enregistrer un commentaire