I am trying to understand how lambdas work in C++ in depth. I have written the following piece of code.
#include <iostream>
#include <functional>
struct A
{
A() { std::cout << "A" << (data = ++count) << ' '; }
A(const A& a) { std::cout << "cA" << (data = a.data + 20) << ' '; }
A(A&& a) { std::cout << "mA" << (data = std::move(a.data) + 10) << ' '; }
~A() { std::cout << "dA" << data << ' '; }
int data;
static int count;
};
int A::count = 0;
void f(A& a, std::function<void(A)> f)
{
std::cout << "( ";
f(a);
std::cout << ") ";
}
int main()
{
A temp, x;
auto fun = [=](A a) {std::cout << a.data << '|' << x.data << ' ';};
std::cout << "| ";
f(temp, fun);
std::cout << "| ";
}
The output is below.
A1 A2 cA22 | cA42 mA52 dA42 ( cA21 mA31 31|52 dA31 dA21 ) dA52 | dA22 dA2 dA1
This is quite clear to me, except for the 'mA52' move constructor call. Note that I am using variable capture by value, so without the move constructor, the copy-constructor would be called here. Why is there an additional copy/move at this step? One would expect the object to be copied only once when fun
is passed by value as an argument to f
. Furthermore, the first copy of the object is immediately destroyed. Why? What is this intermediary copy?
Aucun commentaire:
Enregistrer un commentaire