I'm just getting into concurrent programming. Most probably my issue is very common, but since I can't find a good name for it, I can't google it.
I have a C++ UWP application where I try to apply MVVM pattern, but I guess that the pattern or even being UWP is not relevant.
First, I have a service interface that exposes an operation:
struct IService
{
virtual task<int> Operation() = 0;
};
Of course, I provide a concrete implementation, but it is not relevant for this discussion. The operation is potentially long-running: it makes an HTTP request.
Then I have a class that uses the service (again, irrelevant details omitted):
class ViewModel
{
unique_ptr<IService> service;
public:
task<void> Refresh();
};
I use coroutines:
task<void> ViewModel::Refresh()
{
auto result = co_await service->Operation();
// use result to update UI
}
The Refresh function is invoked on timer every minute, or in response to a user request. What I want is: if a Refresh operation is already in progress when a new one is started or requested, then abandon the second one and just wait for the first one to finish (or time out). In other words, I don't want to queue all the calls to Refresh - if a call is already in progress, I prefer to skip a call until the next timer tick.
My attempt (probably very naive) was:
mutex refresh;
task<void> ViewModel::Refresh()
{
unique_lock<mutex> lock(refresh, try_to_lock);
if (!lock)
{
lock.release();
co_return;
}
auto result = co_await service->Operation();
// use result to update UI
}
But of course an assertion fails: unlock of unowned mutex. I guess that the problem is the unlock of mutex by unique_lock destructor, which happens in the continuation of the coroutine and on a different thread (other than the one it was originally locked on).
Using Visual C++ 2017.
Aucun commentaire:
Enregistrer un commentaire