I try to write an iterator that iterates over a container by index. A It
and a const It
both allow changing the content of the container. A Const_it
and a const Const_it
both forbid changing the content of the container.
After that, I try to write a span<T>
over a container. For a type T
that is not const, both const span<T>
and span<T>
allows changing the content of the container. Both const span<const T>
and span<const T>
forbid changing the content of the container.
The code does not compile because:
// *this is const within a const method
// But It<self_type> requires a non-const *this here.
// So the code does not compile
It<self_type> begin() const { return It<self_type>(*this, 0); }
If I make the constructor of It
to accept a const
container, it doesn't look right because the iterator can modify the content of the container.
If I get rid of the const of the method, then for a non-const type T, a const span<T>
cannot modify the container.
It
inherits from Const_it
to allow implicit conversion from It
to Const_it
during template instantiation.
I use a pointer instead of a reference to in the iterators (const C* container_;
) for allowing assigning one iterator to another iterator.
I suspect something is very wrong here because I even think about:
Does cast away const of *this cause undefined behavior?
But I don't know how to fix it.
Test:
#include <vector>
#include <numeric>
#include <iostream>
template<typename C>
class Const_it {
typedef Const_it<C> self_type;
public:
Const_it(const C& container, const int ix)
: container_(&container), ix_(ix) {}
self_type& operator++() {
++ix_;
return *this;
}
const int& operator*() const {
return ref_a()[ix_];
}
bool operator!=(const self_type& rhs) const {
return ix_ != rhs.ix_;
}
protected:
const C& ref_a() const { return *container_; }
const C* container_;
int ix_;
};
template<typename C>
class It : public Const_it<C> {
typedef Const_it<C> Base;
typedef It<C> self_type;
public:
//It(const C& container.
It(C& container, const int ix)
: Base::Const_it(container, ix) {}
self_type& operator++() {
++ix_;
return *this;
}
int& operator*() const {
return mutable_a()[ix_];
}
private:
C& mutable_a() const { return const_cast<C&>(ref_a()); }
using Base::ref_a;
using Base::container_;
using Base::ix_;
};
template <typename V>
class span {
typedef span<V> self_type;
public:
explicit span(V& v) : v_(v) {}
It<self_type> begin() { return It<self_type>(*this, 0); }
// *this is const within a const method
// But It<self_type> requires a non-const *this here.
// So the code does not compile
It<self_type> begin() const { return It<self_type>(*this, 0); }
It<self_type> end() { return It<self_type>(*this, v_.size()); }
It<self_type> end() const { return It<self_type>(*this, v_.size()); }
int& operator[](const int ix) {return v_[ix];}
const int& operator[](const int ix) const {return v_[ix];}
private:
V& v_;
};
int main() {
typedef std::vector<int> V;
V v(10);
std::iota(v.begin(), v.end(), 0);
std::cout << v.size() << "\n";
const span<V> s(v);
for (auto&& x : s) {
x = 4;
std::cout << x << "\n";
}
}
Aucun commentaire:
Enregistrer un commentaire