I have been working on implementing SSAO into the engine I am writing, and a major problem has arrived. Everything was going quite well until I realized that my SSAO was not working correctly. There are two things that I can find that are wrong with my SSAO and I am unable to figure out how to remedy them.
My shader code is at the end of this post, before that I will be describing the problems with images.
Firstly, as seen in the below screenshot, there are some wierd artifacts showing up based on the angle of viewing. So far I am assuming the way I am implementing the View matrix is wrong. I have done a lot of research about how this all should work and I understand it in theory. However, in practice things are not changing as I would expect.
Secondly, whenever I get close to the blocks, I get very odd triangle shadows that appear around the edges of the screen, as shown in the next screenshot.
These two images show the main issues I am having. I am using a deferred type Renderer to render the geometry to a few textures (Position, normals, color) the importing these textures and using them to manipulate the final output. The first two codeblocks are the vertex and fragment shaders respectively for translating the geometry to textures.
Vertex Shader #version 430 core
layout(location=0) in mat4 modelMatrix;
layout(location=4) in vec4 VertexPosition;
layout(location=5) in vec4 VertexNormal;
layout(location=6) in vec3 VertexColor;
layout(location=7) in vec2 TextureCoords;
out vec4 vNormal;
out vec3 vColor;
out vec4 shaderCoord;
out vec2 texCoords;
layout(location=8) uniform mat4 V;
layout(location=12) uniform mat4 P;
void main()
{
shaderCoord = (V*modelMatrix * VertexPosition);
mat4 normalMatrix = transpose(inverse(V*modelMatrix));
vNormal = (normalMatrix*VertexNormal);
texCoords = TextureCoords;
vColor = VertexColor;
gl_Position = P*shaderCoord;
}
Fragment Shader
#version 430 core
in vec4 vNormal;
in vec3 vColor;
in vec4 shaderCoord;
in vec2 texCoords;
layout (location=0) out vec4 NormalBuffer;
layout (location=1) out vec4 ColorBuffer;
layout (location=2) out vec4 PositionBuffer;
layout (location=3) out vec4 TextureCoordBuffer;
out float fragDepth;
//Start of the main function.
void main()
{
NormalBuffer = vec4(normalize(vNormal).xyz, 1.0);
ColorBuffer = vec4(vColor, 1.0);
PositionBuffer = vec4(shaderCoord.xyz, 1.0);
TextureCoordBuffer = vec4(texCoords, 0.0, 1.0);
fragDepth = gl_FragCoord.z;
}
As you can see, I am translating everything from world space to view space before I write them to the textures. I would much prefer to keep them in world space but when I do, the entire screen looks white with occasional hints of shadows, but the background swaps between white and black depending on camera angle.
Next are my SSAO shaders, In order to implement these I followed a few tutorials, so they probably look familiar. If the tutorial was correct, the next two shaders should work correctly but they are not.
Vetex shader that just creates a quad, and applies the final texture to it. #version 430 core
layout (location=0) in vec3 VertexPosition;
layout (location=1) in vec2 TextureCoords;
out vec2 texCoords;
void main (){
texCoords = TextureCoords;
gl_Position = vec4(VertexPosition, 1.0);
}
Fragment shader for SSAO
#version 430 core
in vec2 texCoords;
layout (location=0) out vec4 fColor;
uniform sampler2D NormalBuffer;
uniform sampler2D positionBuffer;
uniform sampler2DArrayShadow shadowMap;
uniform sampler1D SSAOKernelMap;
uniform sampler2D SSAONoiseMap;
layout(location=12) uniform mat4 P;
layout(location=8) uniform mat4 V;
uniform uint kernelSize;
uniform vec2 windowSize;
//Define Variables for SSAO Processing.
float radius = 0.5;
float SSAOBias = 0.025;
float power = 1.5;
//mat4 biasMatrix = mat4(0.5,0.0,0.0,0.0,0.0,0.5,0.0,0.0,0.0,0.0,0.5,0.0,0.5,0.5,0.5,1.0);
void main()
{
//Retrieve from textures
vec3 shaderCoord = (texture(positionBuffer, texCoords)).xyz;
vec3 vNormal = normalize((texture(NormalBuffer, texCoords)).rgb);
//process SSAO
vec2 NoiseScale = vec2(windowSize.x/4.0, windowSize.y/4.0);
vec3 randVec = normalize(texture(SSAONoiseMap, texCoords*NoiseScale).xyz);
vec3 tangent = normalize(randVec - vNormal * dot(randVec, vNormal));
vec3 bitTangent = cross(vNormal, tangent);
mat3 TBN = mat3(tangent, bitTangent, vNormal);
//Begin Processing of SSAO with inputed Kernel Samples
float Occlusion = 0.0;
for(int i=0; i<kernelSize; i++){
vec4 kernelSample = texture(SSAOKernelMap, i);
vec3 TSample = TBN*kernelSample.rgb;
TSample = shaderCoord + TSample * radius;
vec4 newCoord = vec4(TSample, 1.0);
newCoord = P*newCoord;
newCoord.xyz /= newCoord.w;
newCoord.xyz = newCoord.xyz * 0.5 + 0.5;
float sampleDepth = texture(positionBuffer,newCoord.xy).z;
//float rangeCheck = smoothstep(0.0,1.0, radius / abs(shaderCoord.z-sampleDepth));
Occlusion += (sampleDepth >= TSample.z+SSAOBias?1.0:0.0);
}
Occlusion = 1.0 - (Occlusion/kernelSize);
fColor = vec4(vec3(Occlusion),1.0f);
}
That is all the information I can think to provide initially. Any help you guys can provide would be immensely helpful! If any other information would help, please let me know and I will be happy to provide.
Extra: The screenshot below is what happens when I try and migrate the view matrix transformation to the SSAO shader. The reason I want to do this is because my lighting function uses the normals and positions in world coordinates not view space coordinates.
Aucun commentaire:
Enregistrer un commentaire