Is there a clause in standard describing the following difference between a ways to call operator () from base classes?
#include <iostream>
#include <type_traits>
#include <cstdlib>
#include <cassert>
template< typename visitor, typename ...visitors >
struct composite_visitor
: std::decay_t< visitor >
, composite_visitor< visitors... >
{
//using std::decay_t< visitor >::operator ();
//using composite_visitor< visitors... >::operator ();
composite_visitor(visitor && _visitor, visitors &&... _visitors)
: std::decay_t< visitor >(std::forward< visitor >(_visitor))
, composite_visitor< visitors... >{std::forward< visitors >(_visitors)...}
{ ; }
};
template< typename visitor >
struct composite_visitor< visitor >
: std::decay_t< visitor >
{
//using std::decay_t< visitor >::operator ();
composite_visitor(visitor && _visitor)
: std::decay_t< visitor >(std::forward< visitor >(_visitor))
{ ; }
};
template< typename visitor, typename ...visitors >
composite_visitor< visitor, visitors... >
compose_visitors(visitor && _visitor, visitors &&... _visitors)
{
return {std::forward< visitor >(_visitor), std::forward< visitors >(_visitors)...};
}
int
main()
{
struct A {};
struct B {};
#if 1
struct { int operator () (A) { return 1; } } x;
struct { int operator () (B) { return 2; } } y;
auto xy = compose_visitors(x, y);
#else
auto xy = compose_visitors([] (A) { return 1; }, [] (B) { return 2; });
#endif
// "implicit":
assert(xy(A{}) == 1);
assert(xy(B{}) == 2);
// "explicit":
assert(xy.operator () (A{}) == 1); // error: member 'operator()' found in multiple base classes of different types
assert(xy.operator () (B{}) == 2);
return EXIT_SUCCESS;
}
"Implicit" invocation compiles fine, but not the "explicit". Why is it so?
compose_visitors combine the arguments into single class by means of construction of a class derived from all of them.
Uncommenting the using derectives removes the hard error. It is clear.
The behaviour is identical for lambda functions and for functors.
Aucun commentaire:
Enregistrer un commentaire