I was doing a neural net in cpp during free time in order to get some more experience in C++11. However I ran into some problems that a I cannot figure out myself.
struct neuronsLayer
{
vector<real> ac;
neuronsLayer(int s)
{
std::cout<<"neuronLayer 1"<<std::endl;
ac = vector<real>(s,0.1f);
}
neuronsLayer(const neuronsLayer& nl)
{
std::cout<<"neuronLayer 2"<<std::endl;
ac = vector<real>(nl.ac);
}
neuronsLayer(neuronsLayer&& nl)
{
std::cout<<"neuronLayer 3"<<std::endl;
ac = std::move(nl.ac);
}
neuronsLayer operator=(const neuronsLayer& nl)
{
std::cout<<"neuronLayer 4"<<std::endl;
return neuronsLayer(nl);
}
neuronsLayer(){ std::cout<<"neuronLayer 5"<<std::endl;}
~neuronsLayer(){}
};
This is a layer implementation, then :
struct network
{
vector<neuronsLayer> hiddens;
vector<neuronsConnection> synaps;
real alpha;
//std::initializer_list
network(vector<int> layers)
{
alpha = 1.f;
hiddens = vector<neuronsLayer>();//+2
for(int& l : layers)
{
hiddens.push_back(neuronsLayer(l));
}
synaps = vector<neuronsConnection>();
for(int i = 0 ; i < layers.size() -1 ; i++)
{
synaps.push_back(std::move(neuronsConnection(layers[i],layers[i+1])));
}
}
void forward(vector<real> input)
{
hiddens[0].ac = input;
for (int layer = 0; layer < hiddens.size() -1; ++layer)
{
for(int i = 0 ; i < synaps[layer].x ; i++)
{
for(int j = 0 ; j < synaps[layer].y ; j++)
{
hiddens[layer+1].ac[i] += hiddens[layer].ac[j] * synaps[layer].w[i + synaps[layer].x * j]; //+ activation +biais
}
}
for(int i = 0 ; i < hiddens[layer].ac.size() ; i ++)
hiddens[layer+1].ac[i] = 1.f/(1+exp(-hiddens[layer+1].ac[i]));
}
}
void backward(vector<real> expected)
{
vector<real> error(expected);
for(int i = 0 ; i < error.size(); i ++)
{
error[i] = expected[i] - hiddens[hiddens.size() -1].ac[i];
}
for (int layer = 0; layer < hiddens.size() -1; ++layer)
{
for(int i = 0 ; i < synaps[layer].x ; i++)
{
for(int j = 0 ; j < synaps[layer].y ; j++)
{
real dw = error[i]*(1+2*exp(-hiddens[0].ac[i])/(1+exp(-hiddens[0].ac[i])));
synaps[layer].w[i + synaps[layer].x * j] += dw*alpha;
}
}
}
}
And the main :
int main(int argc, char** argv)
{
vector<int> net = {64,2};
network nn(net);
vector<float> o = {1,0};
vector<float> t = {0,1};
auto rOne = std::bind(std::normal_distribution<float>(6,1), std::default_random_engine{});
auto rTwo = std::bind(std::normal_distribution<float>(3,1), std::default_random_engine{});
auto gOne = [&](){
int x=rOne(),y=rOne();
//while(x=rOne > 8 or x < 0);
//while(y=rOne > 8 or y < 0);
std::vector<real> tbr (64,0);
tbr[x + y*8] = 1.0;
return tbr;
};
auto gTwo = [&](){
int x=rTwo(),y=rTwo();
//while(x=rTwo > 8 or x < 0);
//while(y=rTwo > 8 or y < 0);
std::vector<real> tbr (64,0);
tbr[x + y*8] = 1.0;
return tbr;
};
for(int i = 0 ; i < 5000 ; i++)
{
nn.forward(gOne());
nn.backward(o);
nn.forward(gTwo());
nn.backward(t);
}
I have one major problem and two questions :
1) I receive a SEGFAULT during execution when backward is called, it seems that hiddens[0] is empty. So I might (little understatement) have misunderstood how move is working ?
Program received signal SIGSEGV, Segmentation fault.
0x0000000000402159 in network::backward (this=0x7fffffffe190, expected=...) at dnn3.cpp:171
171 real dw = error[i]*(1+2*exp(-hiddens[0].ac[i])/(1+exp( hiddens[0].ac[i])));
(gdb) p i
$1 = 0
(gdb) p hiddens[0].ac[i]
$2 = (__gnu_cxx::__alloc_traits<std::allocator<float> >::value_type &) @0x3f0000003f000000: <error reading variable>
2) Before that the output of the program is :
neuronLayer 1
neuronLayer 3
neuronLayer 1
neuronLayer 3
neuronLayer 2
Why is the copy constructor called ? I create only 2 layers, and both of them are generated following the exact same process, and only one of them is using this constructor. And I can't understand why it's needed.
3) Concerning the bound objects rOne and rTwo, are they always returning the same value ? cause when I poked into the gOne output it seems that it gave back twice the same value. Is that normal ?
Thanks in advance, Marc.
Aucun commentaire:
Enregistrer un commentaire